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The three-dimensional stability of the family of two-dimensional inviscid vortex
patches discovered by Abrashkin & Yakubovich (Sov. Phys. Dokl. vol. 29, 1984, p. 370)
is explored. Generally unsteady and non-uniform, these bounded regions of vorticity
evolve freely in a surrounding irrotational flow. This family of solutions includes the
Rankine circular vortex, Kirchhoff’s ellipse, and freely rotating polygonal vortices as
special cases. Taking advantage of their Lagrangian description, the stability analysis
is carried out with the theory of local instabilities. It is shown that, apart from the
Rankine vortex, these flows are three-dimensionally unstable. Background rotation or
density stratification may however be stabilizing.

1. Introduction
There have been considerable developments in stability theory thanks to the

discovery of elliptical instability. This instability alters the evolution of vortices or
coherent structures in shear flows once their streamlines are locally elliptical (Bayly,
Orszag & Herbert 1988; Huerre & Rossi 1998; Cambon & Scott 1999; Kerswell 2002).
In 1987, Bayly pointed out that elliptical instability and other mechanisms such as
centrifugal or columnar vortex instabilities could be described by an unified approach;
he wrote: “The common features of these broadband instabilities suggest that they
are all special cases of a very general phenomenon, and that a theory broad enough
to comprehend these effects would lead to new insights into instabilities of other flows
as well” (Bayly 1987). The approach he formulated and developed in parallel with
Eckhoff & Storesletten (1978), Friedlander & Vishik (1991), and Lifschitz & Hameiri
(1991) is the theory of local (or short-wave) instabilities, which led to the discovery
of some new instability mechanisms (Friedlander & Lipton-Lifschitz 2003).

The present paper deals with the stability of a class of two-dimensional exact
solutions of the Euler equations discovered by Abrashkin & Yakubovich (1984).
Described in a Lagrangian representation, the solution of Abrashkin & Yakubovich
includes Gerstner’s waves as a special case. It also describes a family of generally non-
uniform and unsteady vortex patches that evolve freely in a surrounding irrotational
flow at rest at infinity. Rankine’s circular vortex and Kirchhoff’s ellipse enter that
category, as steadily rotating polygonal vortex patches with non-uniform vorticity
distributions.

It is well-known that the self-induced rotation of Kirchhoff’s ellipse may be stopped
by imposing an irrotational strain field at infinity: this is the Moore–Saffman vortex
(Saffman 1992, § 9.3). In the present paper, we will show that non-uniform polygonal
vortex patches also constitute steady equilibria of the Euler equations when subjected
to strain fields.
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Apart from elliptical and weakly deformed polygonal vortex patches whose stability
has been studied with classical approaches (Robinson & Saffman 1984; Vladimirov &
Il’in 1988; Waleffe 1990; Miyazaki, Imai & Fukumoto 1994; Le Dizès 2000; Eloy &
Le Dizès 2001), the three-dimensional stability of the Abrashkin & Yakubovich family
of vortices has not to our knowledge been investigated. Technical difficulties arise
because of their unsteadiness and the impossibility of expressing their velocity field
explicitly in Eulerian form, so that conventional techniques used in stability theory
seem inappropriate.

Fortunately, the theory of short-wave instabilities may be applied to such flows
described in a Lagrangian representation, as outlined and applied recently to
Gerstner’s waves (Leblanc 2004). The stability problem is reduced to a set of ordinary
differential equations whose main parameter is the distortion matrix of the equilibrium
flow. Here, we extend the analysis to the Abrashkin–Yakubovich family of solutions,
and also incorporate the effects of background rotation and density stratification.

It is important to note that the present work is restricted to the response of the
vortex patches to infinitesimal localized disturbances. Stability with respect to this
kind of disturbance does not imply that the flow is linearly stable to all disturbances
(in particular with long wavelengths). For instance, Love’s instability criterion for
Kirchhoff’s ellipse cannot be deduced from the local theory.

The paper is organized as follows: the Abrashkin–Yakubovich solution is presented
in § 2 and some examples of vortex patches are proposed in § 3. The local stability
theory is recalled in § 4 and exact stability criteria are formulated. The stability
analysis of vortex patches is presented in § 5, and effects of rotation and stratification
are discussed respectively in § 6 and § 7. Results are applied to steady polygonal
vortices in § 8. After the concluding part (§ 9), some proofs are presented in the
Appendices.

2. The solution of Abrashkin & Yakubovich
In the plane (O; x̂, ŷ), let a = (a, b) be the Lagrangian coordinates of a fluid particle,

and X(t; a, b) = X(t; a, b)x̂ + Y (t; a, b) ŷ its instantaneous position. To describe two-
dimensional motions, it is convenient to introduce complex variables. So let

ξ = a + ib, Z(t; ξ, ξ̄ ) = X(t; a, b) + iY (t; a, b)

be respectively the complex Lagrangian label and the complex instantaneous position
of a fluid particle. In terms of these variables, Abrashkin & Yakubovich proved that
Z(t; ξ, ξ̄ ) describes the motion of an incompressible inviscid fluid provided

J (ξ, ξ̄ ) = |∂ξZ|2 − |∂ξ̄Z|2, Γ (ξ, ξ̄ ) = 2i
(∂ξ Z̄)(∂ξ̄ Ż) − (∂ξ̄ Z̄)(∂ξ Ż)

|∂ξZ|2 − |∂ξ̄Z|2 (2.1a, b)

are Lagrangian invariant, i.e. independent of time along a fixed trajectory. The dot
stands for the material derivative (Ż = ∂tZ) while the overbar denotes the complex
conjugate. In (2.1), J (ξ, ξ̄ ) is the Jacobian determinant of the invertible mapping
relating Lagrangian to physical planes, i.e. J = |∂(X, Y )/∂(a, b)| = |∂(Z, Z̄)/∂(ξ, ξ̄ )| �=0,
while Γ (ξ, ξ̄ ) is the local vorticity of fluid particles. Their invariance follows from
incompressibility, inviscidness and two-dimensionality.

A class of solutions that satisfy these constraints is (Abrashkin & Yakubovich 1984)

Z(t; ξ, ξ̄ ) = G(ξ )ei(λ+ν)t + H (ξ̄ )ei(λ−ν)t (2.2)
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where λ and ν are real parameters and the complex analytic functions G and H are
arbitrary; the only restriction for the motion to be defined is that |G′(ξ )|2 �= |H ′(ξ̄ )|2
which follows from the non-vanishing of the Jacobian (2.1a). This class of solutions
includes Gerstner’s waves as a special case, and the following subclass to which the
major part of the paper is devoted:

Z(t; ξ, ξ̄ ) = ξeiωt + H (ξ̄ ) with |H ′(ξ̄ )| < 1 and |ξ | � 1. (2.3)

We assume ω > 0 without loss of generality.† In the trivial case where H is uniform
in space (H ′ = 0), the motion is a uniform rotation with angular velocity ω. When H

is not uniform, fluid particles still rotate with angular velocity ω along circles with
radius |ξ |, but the centres of each trajectory located at H (ξ̄ ) differ.

At each instant of time, (2.3) maps the unit disk |ξ | � 1 of the Lagrangian plane
onto a deformed surface in the physical plane. The boundary C(t) of this surface is
the mapping of the unit circle |ξ | =1. It is by construction a material contour. Inside
or on C(t), the vorticity of the flow may be computed and is, from (2.1b)

Γ (ξ, ξ̄ ) = 2ω/(1 − |H ′|2). (2.4)

Thus, vorticity is positive but generally non-uniform in space.
Outside C(t), Abrashkin & Yakubovich proved that these vortex patches may be

matched by a potential flow at rest at infinity. The external potential flow is constructed
as follows: the complex velocity field W = U − iV is represented in Eulerian implicit
form as

Wext (η, t) = −iωη−1e−iωt , (2.5)

where η is an auxiliary complex parameter such that |η| > 1 and which is related to
the complex coordinate z = x + iy by

z = ηeiωt + H (η−1). (2.6)

Continuity of velocity and pressure across the vortex boundary is ensured (Zeitlin
1991). From (2.5) and (2.6), the complex velocity does not depend on z̄ outside C(t),
so that the external flow is potential.

At each instant of time, (2.6) may be recognized as a conformal mapping between
the flow exterior to the unit circle in the complex η-plane and the flow exterior to the
curve C(t) in the complex z-plane. According to Yakubovich & Zenkovich (2001), the
condition |H ′| < 1 avoids the existence of singularities in the external potential flow.
Finally, since Wext ∼ − iω/z as |z| → ∞, the Abrashkin–Yakubovich vortex patches
behave at infinity as point vortices with circulation 2πω.

3. Examples of distorted vortex patches
When H is uniform, (2.3) corresponds to Rankine’s circular vortex with uniform

vorticity 2ω. When H ′(ξ̄ ) �= 0, the vortex is deformed. The case

H (ξ̄ ) = Sξ̄n−1/(n − 1), (3.1)

is of interest, where n � 2 is an integer and S a complex number such that |S| < 1 to
ensure |H ′| < 1. The phase of S implies only a fixed rotation of the coordinate axes
that is irrelevant in the stability analysis. We assume therefore that S is a real number

† More generally, (2.3) may be written as Z(t; ξ, ξ̄ ) =A(ξeiωt + H (ξ̄ )) where the positive real
number A is a scaling parameter which does not affect the results of the paper.
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(a) (b) (c) (d)

Figure 1. Contour lines of vorticity for polygonal vortices (3.1) with S =0.4 and n= 3 (a),
4 (b), 5 (c), 6 (d ). Vorticity increases from the centre to the boundary. These vortex patches
rotate uniformly without change of form in a potential flow at rest at infinity. Rotation may
be stopped by imposing a large-scale strain field at infinity (§ 8).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Evolution over one period of material contours in the exponential vortex (3.2a)
with S = 0.6: ωt = 0 (a), π/4 (b), π/2 (c), 3π/4 (d ), π (e), 5π/4 (f ), 3π/2 (g), 7π/4 (h). Contours
are instantaneous projections of concentric circles in the Lagrangian ξ -plane. The dot on the
vortex boundary represents the material point with maximum vorticity.

such that 0 � S < 1. If n= 2, the flow corresponds to Kirchhoff’s ellipse with uniform
vorticity 2ω/(1 − S2), aspect ratio (1 + S)/(1 − S), and whose axes rotate uniformly
at angular velocity ω/2. When n> 2, (3.1) represents polygonal vortex patches that
rotate without change of form with angular velocity ω(1 − 1/n).

Except for n= 2, vorticity is not uniform: levels of constant vorticity are concentric
circles in the Lagrangian plane and hypocycloids in the physical plane. Vorticity
increases from the centre of the vortex to its boundary, along which it is constant.
Examples of such vortices are plotted on figure 1. Because they are non-uniform,
these polygonal vortices differ from those discussed for instance in Saffman (1992,
§ 9.4). For infinitesimal deformations of the vortex boundaries, we anticipate however
that these two branches of solutions are connected (see the end of Appendix C).

Kirchhoff’s and polygonal vortices are very specific because they rotate freely
without change of form. Generally, for other choices of the function H (ξ̄ ), the
vortex contour is deformed continuously with time. Some examples may be found
in Abrashkin & Yakubovich (1984) and Yakubovich & Zenkovich (2001). Others are
illustrated on figures 2 and 3. They correspond respectively to

H (ξ̄ ) = S exp(ξ̄ − 1) and H (ξ̄ ) = S cos21 tan ξ̄ , (3.2a, b)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Same as figure 2 but for the tangent vortex (3.2b). The two dots
are vorticity maxima.

where S is chosen real and such that 0 � S < 1 for reasons already given. We shall
refer to (3.2a) and (3.2b) respectively as the exponential and the tangent vortex
patches. Unlike the polygonal vortices (3.1), vorticity is no longer constant along the
material contours represented on figures 2 and 3, and in particular on their boundary.
For instance, the vorticity distribution of the exponential vortex is, from (2.4) and
(3.2a),

Γ (ξ, ξ̄ ) = 2ω/(1 − S2 exp(ξ + ξ̄ − 2)).

Therefore, levels of constant vorticity are vertical strips in the Lagrangian plane (Reξ
constant); the maximum value is reach at the material point ξ = 1 of the boundary,
and this motion is represented on figure 2. For the tangent vortex, two maxima of
vorticity are located at the points ξ = ± 1 represented on figure 3.

In the above examples (3.1) and (3.2a, b), the maximum value of the vorticity
Γmax = 2ω/(1 − S2) is finite and reached on the boundary. If S =1, vorticity becomes
infinite and cusps appear in the vortex contours. For instance Kirchhoff’s ellipse
becomes a vortex sheet rotating in a potential flow (Saffman 1992, § 9.3). We will not
consider such unphysical cases here.

Even with finite vorticity distributions, the physical relevance of these rather exotic
vortex patches may be discussed. They are solutions of Euler equations but exhibit
a discontinuity of vorticity across their boundary that viscosity will smooth. At low
Reynolds number, it is likely that these vortices will relax to axisymmetry by pure
diffusion. However at large Reynolds number, dynamics will essentially be inviscid
and axisymmetrization of these vortices is an open question. This inviscid mechanism
holds for broadly distributed vorticity (Bassom & Gilbert 1998), but Dritschel (1998)
has pointed out that “vortices with sufficiently steep edge gradients behave in a
radically different way; in particular they can remain non-axisymmetric, apparently
indefinitely”. Since he considered the dynamics of regularized Kirchhoff ellipses,
we can expect that such a conclusion holds for all members of the Abrashkin–
Yakubovich solution so that they may represent realistic flows. However, are they
stable?
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4. General stability criteria
As mentioned in the Introduction, conventional stability techniques cannot be

applied to the Abrashkin–Yakubovich solution owing to their unsteadiness and
their Lagrangian representation. Thus we restrict our study to infinitesimal short-
wavelength disturbances and start with general considerations.

The theory of local instabilities asserts that an equilibrium flow is linearly unstable
if it contains at least one unstable trajectory. A trajectory a is said to be unstable if

lim
t→∞

sup
k0⊥v0

|v(t; a)| = ∞,

where the unit vectors k0 and v0 are respectively the initial values of the wave vector
k(t; a) and the velocity amplitude v(t; a) of the disturbance. These are respectively
solutions of (Friedlander & Lipton-Lifschitz 2003)

k̇ = −LT k, v̇ = (2kkT/|k|2 − I)Lv, (4.1a, b)

where L(t; a) = [∂U/∂x](X(t; a), t) is the local velocity gradient of the equilibrium
flow and I the identity matrix.

Usually, the equilibrium flow is known in the Eulerian representation through
its velocity field U(x, t), and the determination of the instantaneous position of
fluid particles requires the resolution of Ẋ = U(X, t). This is not necessary here
however since trajectories are explicit. Furthermore, both the wave vector k(t; a) and
the velocity gradient L(t; a) may be computed explicitly from the distortion matrix
F(t; a) = ∂ X/∂a (Leblanc 2004):

k(t; a) = (F0F
−1)T k0, L(t; a) = ḞF−1. (4.2a, b)

For the Abrashkin–Yakubovich family of solutions (2.2), it is convenient to define the
complex distortion matrix Fc(t; ξ, ξ̄ ) = ∂(Z, Z̄)/∂(ξ, ξ̄ ) which is given in Appendix A,
(A 1). The horizontal part of the distortion matrix Fh(t; a, b) = ∂(X, Y )/∂(a, b) may
then be computed from the relation (Yakubovich & Zenkovich 2001)

Fc = TFh T−1 where T =

√
2

2

(
1 i
1 −i

)
. (4.3)

Therefore from (4.2a, b) both k and L are explicit. Splitting the wave vector into
horizontal and vertical parts as k = kh + kz ẑ, it turns out that |kh(t; a)| is bounded
with time, while kz is constant.

Thus, the only transport equation to solve is (4.1b), or equivalently (Lifschitz 1994)

ω̇ = Lω + (ω × k)Γ · k/|k|2, (4.4)

where ω = k × v is the amplitude of the vorticity disturbance and Γ the vorticity of the
equilibrium flow. For two-dimensional disturbances (Γ · k =0) or along irrotational
trajectories, (4.4) becomes ω̇ = Lω and admits Cauchy’s representation

ω(t; a) = FF−1
0 ω0 (4.5)

so that |ω(t; a)| and |v(t; a)| are bounded for all time. This proves the first two items
of the following proposition:

Local Stability Criteria.

(i) Two-dimensional disturbances are stable.
(ii) Three-dimensional disturbances are stable if |H ′|2/|G′|2 = (λ+ ν)/(λ− ν).
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(iii) Three-dimensional disturbances are unstable when

|H ′|
|G′| >

|2λ + ν|
|2λ − ν| . (4.6)

The last item is proved for disturbances with vertical wave vector (kh = 0) for which
(4.1b) becomes v̇ = − Lv, which may be solved exactly (Appendix A). This is a suffi-
cient condition for instability since it is restricted to that particular orientation of k.

These are the most general stability results that we have been able to derive
without particularizing the general expression (2.2). For Gerstner’s wave, (iii) yields
the instability criterion derived in Leblanc (2004) but is unfruitful for vortex patches
(2.3). It is therefore necessary to consider disturbances with an oblique wave vector.

5. The instability of distorted vortex patches
As the equilibrium flows under consideration are two-dimensional, Bayly, Holm &

Lifschitz (1996) proved that the transport equation (4.4) may be reduced to a second-
order ordinary differential equation for the new variable q =ω · ẑ|k|/|kh|:

q̈ + Q(t)q = 0, (5.1a)

Q(t) = −k2
z

(
kT

h (L̇ + LL − 3LLT )kh

|kh|2|k|2 +

(
4|k|2 − k2

z

)(
kT

h Lkh

)2

|kh|4|k|4

)
. (5.1b)

The flow is unstable if |q(t)| grows without bound along some trajectory. (Dependence
with respect to the Lagrangian label is now implicit for brevity.)

For the vortex patches (2.3), it may be shown after some algebra that the
coefficient Q in (5.1) has the following explicit dependence: Q(t; ω, δ, ϑ, γ − 2ϕ).
Here, δ and γ are respectively the modulus and argument of H ′(ξ̄ ), while ϕ

and ϑ are the angles characterizing the initial orientation of the wave vector
k0 = (cosϕ sin ϑ, sinϕ sinϑ, cosϑ)T .

It turns out that Q is periodic in time with period 2π/ω, so that (5.1) is a Hill’s
equation. Furthermore, the potential Q is invariant for the following transformations
ϑ → − ϑ , ϑ → π − ϑ , and ϕ → ϕ + π. Since the orientation of the initial wave vector
k0 is left free, we choose in the rest of the paper and for simplicity of the presentation
ϕ such that γ − 2ϕ = π/2. Other values of ϕ do not qualitatively affect the results
given below.

The parameters δ ∈ [0; 1[ and ϑ ∈ [0; π/2] are the most important of the present
problem. Recall that δ = |H ′| characterizes the local deformation experienced by a
fluid particle and is generally not uniform in the vortex patch; recall also that if δ =0
everywhere, the flow is a circular Rankine’s vortex. ϑ is the angle between the initial
wave vector and the vertical axis; the disturbance is two-dimensional if ϑ = π/2 and
three-dimensional otherwise.

First, we consider the stability of weakly distorted flows, i.e. δ 
 1. For the examples
considered in (3.1) and (3.2a, b), it corresponds to S 
 1. At first order in δ, (5.1) gives

q̈ + ω2(a0 + 2δa1 sin ωt) q = 0. (5.2)

This is a Mathieu equation with coefficients:

a0 = 4 cos2 ϑ, a1 =
(

5
2

+ 4 sin2 ϑ
)
cos2 ϑ. (5.3)

When δ 
 1, solutions of (5.2) are bounded except in the vicinity of resonances defined
by a0 = 1

4
j 2 where j is a positive integer. Resonant solutions are exponentially growing
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Figure 4. Computed dimensionless growth rate σ/ω (maximized over all possible orientations
of the wave vector) for the Abrashkin–Yakubovich vortices (2.3) as a function of the local
deformation δ = |H ′|, without background rotation nor density stratification. The dashed line
with slope 25/64 corresponds to the small-δ asymptotics.

with growth rate of order δj . By a perturbation analysis, the maximum growth rate
associated with the first-order resonance (j = 1) is σ = δωa1 (Bender & Orszag 1978,
§ 11.4).

From (5.3), first-order resonance occurs when cos ϑ = 1
4

and the growth rate of

the corresponding solution is σ = 25
64

ωδ. Since δ = |H ′|, we can conclude that any
weakly deformed vortex column of the form (2.3) is unstable to three-dimensional
localized disturbances. For the examples (3.1) and (3.2a, b), the maximum value of
the asymptotic growth rate is

σmax = 25
64

ωS with S 
 1.

Thus, one recovers the results of Vladimirov & Il’in (1988) and Le Dizès (2000) for
Kirchchoff or polygonal vortices, but surprisingly this result holds for the full family
of vortices by replacing S by |H ′|max . An explanation will be given at the end of the
paper in § 9.

For strong deformations, Mathieu’s equation (5.2) is no longer valid and (5.1)
requires a numerical integration. Since Q(t) is periodic, this is achieved with Floquet’s
theory (Bender & Orszag 1978, § 11.4). Results reported on figure 4 show that the
Abrashkin–Yakubovich family of vortices is unstable if H ′(ξ̄ ) �= 0 somewhere. Rankine’s
vortex is therefore the only stable member of that family.

Figure 4 also shows that the growth rate is enhanced by distortion. Since δ = |H ′|,
the growth of the disturbances is not uniform in the vortex. Furthermore, since
vorticity (2.4) is an increasing function of |H ′|, the most unstable regions are those
where vorticity is maximum. As an example, the most dangerous instabilities are
located along the boundary of the polygonal vortices (3.1) represented on figure 1.
For (3.2a, b), the material points represented on figures 2 and 3 carry the most
unstable disturbances.

6. Effect of background rotation
A particular case of the Abrashkin–Yakubovich solution (2.2) is

Z(t; ξ, ξ̄ ) = (ξeiωt + H (ξ̄ ))eiΩt with |H ′(ξ̄ )| < 1 and |ξ | � 1. (6.1)
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The motion thus defined is (2.3) with a uniform rotation around the vertical axis (O ẑ)
at angular velocity Ω , assumed constant. Therefore, (2.3) may be seen as the relative
position of a fluid particle in the frame rotating at Ω , and (6.1) its absolute position
with respect to the inertial frame (O; x̂, ŷ, ẑ). The exterior flows of the vortex patches
constructed in § 2 are still irrotational when viewed from the rotating frame, but have
uniform vorticity 2Ω in the inertial frame.

The consequence is that the direct stability analysis of (6.1) is equivalent to the
stability of (2.3) in the rotating frame. Therefore, the method presented in the previous
section may be applied directly to (6.1), provided the complex distortion matrix Fc is
computed from (6.1).

Explicit calculation of the vorticity associated with (6.1) yields

Γ (ξ, ξ̄ ) = 2Ω + 2ω/(1 − |H ′|2). (6.2)

This is the absolute vorticity of the motion which is related to the relative vorticity
(2.4) through the usual relation: Γabs = 2Ω +Γrel . Recalling that ω is the angular
velocity of a fluid particle in its motion relative to the rotating frame, it is useful to
introduce the following dimensionless parameter:

f = Ω/ω.

This is the inverse of a Rossby number. Background rotation is cyclonic if f > 0 and
anticyclonic if f < 0.

For weak distortions (δ = |H ′| 
 1), the Mathieu equation (5.2) has coefficients

a0 = 4(1 + f )2 cos2 ϑ, a1 =
((

5
2

+ 2f
)

+ 4(1 + f )2 sin2 ϑ
)
cos2 ϑ.

Since 0 � cos2 ϑ � 1, the first-order resonance (a0 = 1
4
) occurs only when

|1 + f | � 1
4
, (6.3)

which is either when f � − 5
4

or when f � − 3
4
. Inside these regions, resonant solutions

grow exponentially with dimensionless growth rate

σ

ω
=

δ

64

(
5 + 4f

1 + f

)2

. (6.4)

Therefore when δ 
 1, Abrashkin–Yakubovich vortex patches are stable in a rotating
frame only for anticyclonic rotations such that − 5

4
� f � − 3

4
.

This stable region is centred around f = −1 from which it may be concluded
from (6.2) with δ 
 1, that the absolute vorticity of the flow is close to zero. In fact
for strong deformations, trajectories with zero absolute vorticity f + 1/(1 − δ2) = 0
are stable as a consequence of item (ii) of the criteria formulated in § 4. This is
an extension of the well-known result that the elliptical instability is stabilized in a
rotating frame at zero absolute vorticity (Craik 1989; Cambon et al. 1994).

For strong deformations, the criterion (4.6) for disturbances with vertical wave
vectors predicts instability if

δ > |3 + 4f |/|1 + 4f |. (6.5)

Inside that region, the dimensionless growth rate is given by

σ

ω
=

(
δ2(1 + 4f )2 − (3 + 4f )2

4(1 − δ2)

)1/2

. (6.6)



100 D. Guimbard and S. Leblanc

–3 –2 –1 0 1
f

0

0.2

0.4δ

0.6

0.8

0.01
0.01

0.1

0.1

1

Figure 5. Instability map for rotating vortex patches (6.1) in a non-stratified flow. Contour
lines of the computed maximum dimensionless growth rate σ/ω as a function of the vortex
deformation δ = |H ′| and the rotation parameter f =Ω/ω. The levels of grey are scaled in
decimal logarithm. The white region is stable. The region delimited by dashed lines which
includes the contour σ/ω = 1 (the left-hand line coincides with the right-hand edge of the
white region) is the region in which disturbances with vertical wave vectors are unstable.

For all other values of the parameters, the resolution of the problem requires
the numerical integration of Hill’s equation (5.1). Formulae (6.4) and (6.6) provide
useful checks for the accuracy of the numerical computations. Results are represented
on figure 5 where the growth rate maximized over all possible orientations of the
initial wave vector is plotted as a function of the parameters (f, δ). For f = 0 (no
background rotation), the vortices (2.3) are unstable for any non-zero deformation, as
already mentioned. While cyclonic rotations (f > 0) are always unstable, anticyclonic
ones may be stabilizing.

The (f, δ)-plane may be divided into four regions that are represented on figure 6(a):
the region T defined by (6.5) in which disturbances with transverse (vertical) and
eventually oblique wave vectors are unstable; the two regions I in which only
disturbances with oblique wave vector are unstable; and the stable region S which
includes trajectories with zero absolute vorticity. Figure 5 shows that the largest
growth rates are reached in region T. A careful inspection of the results shows that
the stable region is bounded by two curves along which disturbances with transverse
wave vector (kh = 0) are stable but periodic with period π, and that cross the δ = 0 axis
respectively at f = − 5

4
and f = − 3

4
as predicted for the first resonance of Mathieu

equation. It may be shown that such curves are defined respectively by δ2(f ) and
δ0(f ), where

δm(f ) =

(
(3 + 4f )2 − m2

(1 + 4f )2 − m2

)1/2

. (6.7)
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Figure 6. Stability diagrams for vortex patches in a rotating stratified flow for s = N/ω < 1
2

(a), s = 1
2

(b), s = 3
4

(c), s = 5
4

(d ). Regions labelled by S are stable; those by T are unstable
with respect to disturbances with transverse (vertical) wave vector. Resonances of order 1, 2
and 3 develop respectively in regions I, II and III.

Note that the curve corresponding to zero absolute vorticity is given by m =1
and is included into the stable region δ2(f ) � δ � δ0(f ). To conclude, the Abrashkin–
Yakubovich vortices are stabilized by rotation if f � − 3

4
and if for any point

(
(3 + 4f )2 − 4

(1 + 4f )2 − 4

)1/2

� |H ′| �
3 + 4f

1 + 4f
. (6.8)

It is important to emphasize from these results that even strongly distorted vortices
may be stabilized for anticyclonic rotations. For instance, it is always possible to find
a rotating frame in which a given Kirchhoff ellipse with arbitrary large aspect ratio is
stable. Non-uniform vortices such as those given by (3.1) or (3.2a,b) are stable in the
region defined by − 5

4
� f � − 3

4
providing that S � (3 + 4f )/(1 + 4f ). If f = − 5

4
for

instance, stable vortices correspond to S � 1
2

(for Kirchhoff ellipses, the aspect ratio
must be less than or equal to 3).
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7. Effect of density stratification
We now study the effects of uniform stable density stratification along the vertical

direction ẑ. Under the Boussinesq approximation, it is shown in Appendix B that the
transport equations may be reduced to

q̈ +

(
Q(t) + N2 |kh(t)|2

|k(t)|2

)
q = 0, (7.1)

where N is the Brunt–Väisälä frequency, and Q(t) the potential defined in (5.1). It is
convenient here to introduce the dimensionless stratification parameter

s = N/ω,

which is the inverse of a horizontal Froude number.
When the vortex distortion is weak, the Mathieu equation (5.2) has coefficients

a0 = 4(1 + f )2 cos2 ϑ + s2 sin2 ϑ, a1 = (5
2

+ 2f + (4(1 + f )2 − s2) sin2 ϑ) cos2 ϑ.

At first order, instability occurs when a0 = 1
4
. Since 0 � cos2 ϑ � 1 and s2 � 0, the

conditions for parametric resonance become, in the presence of (stable) stratification†,(
s � 1

2
and |1 + f | � 1

4

)
or

(
s � 1

2
and |1 + f | � 1

4

)
. (7.2)

Inside these regions, the dimensionless growth rate of short-wave instabilities is

σ

ω
=

δ(5 + 4f )2(1 − 4s2)

64(1 + f )2 − 16s2
.

Thus, for low stratification (s � 1
2
), the mechanism of stabilization of the vortex

patches for zero absolute vorticity still operates, but for larger stratifications
(s � 1

2
) stability and instability regions interchange. However, higher-order resonances

corresponding to a0 = 1
4
j 2 with j � 2 may arise in regions that are stable with respect

to the first-order resonance j = 1. For instance, if s = 1
2

and δ 
 1, the first-order

resonance disappears whereas the second-order one (j = 2) develops if f � − 3
2

or

f � − 1
2

(region II in figure 6b). If 1
2
<s < 1 and δ 
 1, this latter resonance is still

present while the first-order resonance reappears now for − 5
4

� f � − 3
4

(region I

in figure 6c). If 1 <s < 3
2

and δ 
 1, the second-order resonance is shifted, and the
third-order one appears (figure 6d ), and so on.

These higher-order resonances are very difficult to detect numerically because their
growth rate is of order δj as δ 
 1. Fortunately, as δ is finite but small enough, we have
observed that the boundaries of the regions in which they develop in the (f, δ)-plane
are given by the curves defined by (6.7), on which disturbances with vertical wave
vector are stable. This provides useful guides for numerical computations of (7.1) for
finite deformations. Results are presented on figure 6.

At first, the region T defined by (6.5) containing disturbances with transverse wave
vector remains for any stratification since these kinds of disturbance are not affected
by buoyancy (see Appendix B). Inside that region short-wave disturbances are the
most amplified, their growth rate being equal to (6.6) (except very near the bounds of
T). For weak stratification 0 <s < 1

2
, we have observed that the first-order resonance

develops in the same regions (I) as in the homogeneous case, although with weaker

† Reversed stratification s2 < 0 is unstable as there always exists ϑ such that a0 < 0.
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growth rate (figure 6a). The stable region S remains unchanged. Thus, if s < 1 and
f � − 3

4
, Abrashkin–Yakubovich vortices are stable provided (6.8) holds everywhere.

If s = 1
2

(figure 6b), we observed numerically that the first-order resonance
disappears, even for strong deformations, and that the second-order resonance
develops in two regions (II) bounded by curves defined respectively by δ3(f ) and
f = − 1

2
. There are now two regions of stability defined respectively by(

f � − 3
4

and δ3(f ) � |H ′| � δ0(f )
)

and
(

− 3
4

� f � − 1
2

and |H ′| � δ0(f )
)
.

Surprising, any distorted vortex patch is stable if s = 1
2

and f = − 1
2
.

If 1
2
<s < 1 (figure 6c), the bounds between the various regions are still given by the

functions δm(f ) if f � − 3
4
. However, for − 3

4
� f � − 1

2
, we can observe by comparing

figures 6(b) and 6(c) that the stable region is smaller. In fact, a new instability region
that depends on the magnitude of stratification arises. For instance if s = 0.75, the
boundary of that region starts at the point (f, δ) ≈ (−0.5, 0.35) and crosses the region
T at the point (f, δ) ≈ (−0.58, 0.52). We have not been able to obtain an expression
for that curve because unlike the other curves separating stable and unstable regions,
this is not characterized by transverse wave vectors.

Thus, unless the deformation is small enough, it seems not to be possible to give a
systematic description of the stability bounds if s > 1

2
. Another example is presented

for s = 1.25 on figure 6(d ). Recall however that resonances of order greater than one
are very weak and therefore sensitive to viscous damping. Thus, if s > 1

2
, the qualitative

picture of instability would be the joining of regions T and I of figures 6(c) or 6(d ),
regions II and III being almost stable.

8. Application to steady polygonal equilibria
We finally consider the following member of the Abrashkin–Yakubovich family:

Z(t; ξ, ξ̄ ) = (ξ + Sξ̄n−1e−iωt )eiωt/n/(n − 1) (8.1)

where 0 � S < 1 and |ξ | � 1. It is clearly a particular case of (2.2), and more precisely
of (6.1) where H (ξ̄ ) is given by (3.1) and Ω = −ω(1 − 1/n). Since we have seen in § 3
that (2.3) with (3.1) correspond to polygonal vortices that rotate without change of
form with angular velocity ω(1 − 1/n), then (8.1) describes steady polygonal equilibria.
An alternative proof is given in Appendix C.

This solution is of particular interest because it is possible to construct outside
the vortex a steady potential flow that behaves as a multipolar strain field at infinity
(Appendix C). This exact solution is therefore a generalization of the Moore–Saffman
elliptical vortex. From (6.2), the vorticity distribution of (8.1) may be computed:
it is again non-uniform if n> 2 and is still represented by figure 1 where now the
contours also coincide with streamlines. When S 
 1 (weak deformations), vorticity
is uniform to a first approximation (Γ = 2ω/n), while the stream function is given in
polar coordinate by (C 5). For S 
 1, the flow therefore corresponds to the multipolar
solution considered by Le Dizès (2000) and Eloy & Le Dizès (2001).

Since it is a particular case of (6.1), the stability of the steady polygonal flow
(8.1) may be easily characterized from the results obtained in the previous sections
by simply replacing f by 1/n − 1. For instance without stratification, the stability
condition (6.8) shows that steady elliptical (n= 2), triangular (n= 3) and square (n= 4)
vortices are unstable for any 0 <S < 1, while higher-order equilibria are unstable only
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if the deformation is large enough. More precisely, (8.1) with n � 5 is stable if

S < (n − 4)/(3n − 4). (8.2)

In the homogeneous case, but for weak deformations S 
 1, the asymptotic formula
(6.4) for the growth rate may be directly applied to (8.1) with f = 1/n − 1 and
δ = S|ξ |n−2. The condition for resonance (6.3) is n � 4, in agreement with Eloy & Le
Dizès (2001), and the maximum asymptotic growth rate is reached on |ξ | =1:

σmax = 1
64

(n + 4)2ωS.

For n= 2, one finds the well-known 9
16

value of Waleffe (1990) for the elliptical
instability (here, when S 
 1, the strain rate and vorticity of the flow are respectively
ωS and ω). For n=3 and 4, formula (50) in Le Dizès (2000) is also recovered. In
the presence of low stratification (s = N/ω < 1

2
), the conclusions above still hold, the

maximum asymptotic growth rate for weak deformations (S 
 1) being replaced by

σmax =
(n + 4)2(1 − 4s2)

16(4 − n2s2)
ωS. (8.3)

If s = 1
2
, elliptical vortices are stable for any ellipticity, triangular vortices are

stable if S < 1
5
, square vortices are all unstable, and the other ones are stable if (8.2)

holds. In fact, square vortices (n= 4) are always unstable, for any stratification. If
s > 1

2
, it can be deduced from (7.2) that the first-order resonance occurs when n � 4

with growth rate (8.3). This shows that while weakly deformed polygonal vortices
with n � 5 are stable in a homogeneous fluid in agreement with (8.2), they become
unstable if stratification is strong enough (s > 1

2
). On the contrary, the first-order

resonance in steady elliptical or triangular equilibria is stabilized by stratification.
Such a mechanism was discovered by Miyazaki & Fukumoto (1992) in the elliptical
case. Higher-order resonances arise if s > 1 however.

Finally, if an additional background rotation is superimposed, that is if (8.1)
corresponds to steady motion relative to a frame which rotates at angular velocity Ω

with respect to an inertial frame, the asymptotic results may be deduced from (6.4)
and (8.3) by replacing f in these formulae by f + 1 − 1/n. When n= 2, we would
recover the stability characteristics of an elliptical vortex in a rotating stratified flow
(Miyazaki 1993; Kerswell 2002; Leblanc 2003), while for n � 3, the results obtained
by Le Dizès (2000) would be extended to a stratified flow.

9. Summary and conclusion
We first summarize the main results of the paper. Several exact stability criteria

have been expressed in § 4 for the Abrashkin–Yakubovich class of solutions (2.2).
Among them, the instability criterion for Gerstner’s wave derived previously has been
extended.

The rest of the paper has been devoted to the family of non-uniform distorted vortex
patches described by Z(t, ξ, ξ̄ ) = ξeiωt + H (ξ̄ ) and that evolve freely in a potential flow
at rest at infinity. We found that:

(i) Apart from Rankine vortices, in a homogeneous fluid they are unstable to
three-dimensional short-wave disturbances. Two-dimensional ones are stable.

(ii) In a rotating frame, short-wave disturbances are stabilized for anticyclonic
rotations (f � − 3

4
) if (6.8) holds everywhere in the vortex. The same conclusion holds

in a rotating stratified flow if s < 1
2
.

(iii) If s = 1
2

and f = − 1
2
, no short-wave instabilities have been detected.
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These results, valid for any member of the family of vortices, have been applied in
§ 8 to steady polygonal equilibria (8.1) which we have proved can be surrounded by a
potential strain field. We found in particular that square vortices are always unstable,
that elliptical and triangular vortices are unstable if s < 1

2
, the other ones being

stable if (8.2) holds. For larger stratification (s > 1
2
), we found that polygonal vortices

with n > 4 are unstable, while the first-order resonance is stabilized in elliptical and
triangular equilibria.

We conclude with an explanation of the instability mechanism described in this
paper. Recall that when H (ξ̄ ) = Sξ̄ , the Abrashkin–Yakubovich solution corresponds
to Kirchhoff’s freely rotating ellipse. In that case, vorticity and strain are uniform
inside the ellipse, and the local stability analysis is mathematically equivalent to the
stability of an unbounded flow with elliptical streamlines in a frame which rotates
with angular velocity ω/2. In fact, for distorted vortex patches described by an
arbitrary analytic function H (ξ̄ ), an analogy with the elliptical instability may be
made, although vorticity and local strain are not uniform inside the vortex. Indeed,
the local velocity gradient of a fluid particle may be computed in explicit form. Split
into symmetric and antisymmetric part, is (without background rotation)

L(t; ξ, ξ̄ ) =
ωδ

1 − δ2

(
sin(ωt + γ ) −cos(ωt + γ )

−cos(ωt + γ ) −sin(ωt + γ )

)
+

ω

1 − δ2

(
0 −1
1 0

)
,

where δ and γ are respectively the modulus and the argument of H ′(ξ̄ ), varying
from one trajectory to another. The symmetric part shows that each fluid particle
experiences a local strain field that rotates with angular velocity ω/2.

However, the local stability analysis considers each trajectory individually, so that
the stability of each trajectory of the solution of Abrashkin & Yakubovich is in
fact equivalent to the stability analysis of a rotating elliptical flow with aspect
ratio (1 + δ)/(1 − δ). Thus, elliptical instability operates in the Abrashkin–Yakubovich
vortices though their shape differs from ellipses. This illustrates once more the
universality of this mechanism.

This work has benefited from the support of Ministère de la Recherche with Action
Concertée Incitative (ACI) “Prévention des catastrophes naturelles” (supervised by
Jan-Bert Flór) and ACI “Jeunes chercheuses et jeunes chercheurs”. We acknowledge
the referees for their constructive criticism.

Appendix A. Proof of the instability criterion
We prove that the solution (2.2) is unstable if inequality (6.5) holds somewhere. For

this, we consider disturbances whose wave vector is perpendicular to the plane of the
flow (kh =0), for which (4.1b) becomes v̇ = −Lv.

The complex Jacobian matrix Fc = ∂(Z, Z̄)/∂(ξ, ξ̄ ) is

Fc(t) =

(
G′ei(λ+ν)t H ′ei(λ−ν)t

H ′e−i(λ−ν)t G′e−i(λ+ν)t

)
, (A 1)

where for brevity G′ = G′(ξ ) and H ′ =H ′(ξ̄ ). Recall that Fc(t) and Fh(t) are related by
(4.3), and that L(t) and F(t) are related by Ḟ= LF, then the complex velocity gradient
defined by Lc = TLhT

−1 is related to Fc by

Ḟc = LcFc. (A 2)
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If we also introduce the complex vector vc =Tvh where vh(t) is the horizontal part of
the velocity disturbance, then vc(t) is governed for vertical wave vectors by

v̇c = −Lcvc. (A 3)

Now, from (A 1) and (A 2), explicit computation yields

Lc(t) =
i

J

(
νI + λJ −2νG′H ′e2iλt

2νG′H ′e−2iλt −νI − λJ

)
, (A 4)

where I = |G′|2 + |H ′|2 and J = |G′|2 − |H ′|2.
System (A 3) with (A 4) has periodic coefficients but may be transformed into a

system with constant coefficients by introducing the following matrices:

R =

(
iλ 0
0 −iλ

)
and P(t) = etR =

(
eiλt 0
0 e−iλt

)
.

Since Ṗ = RP and P−1RP = R, then the new variable w = P−1vc is, from (A 3), governed
by ẇ = −Mw where M = P−1LcP+ R. Explicit computations give

M =
i

J

(
νI + 2λJ −2νG′H ′

2νG′H ′ −νI − 2λJ

)
,

which is, as required, time independent. Eigenvalues of M satisfy σ 2 = −4λ2 − ν2 −
4λνI/J . Disturbances grow exponentially if σ 2 > 0 and the flow (2.2) is unstable if
for some point (ξ, ξ̄ ) in the complex Lagrangian plane, inequality (6.5) holds.

Appendix B. Derivation of Hill’s equation
In the Boussinesq approximation, equations governing the motion of an inviscid

stratified flow are given by (LeBlond & Mysak 1978, § 1.5)

Du/Dt + ∇ = −b ẑ, Db/Dt = N2u · ẑ, div u = 0,

where b(x, t) is the buoyancy field, and N is the Brunt–Väisälä frequency. Stratification
is assumed stable and uniform (N real and constant).

Let U(x, t) and B(x, t) be the velocity and buoyancy fields of an exact solution of
the Boussinesq equations. To study the response of that flow to an initially localized
disturbance, we linearize the equations about the equilibrium solution, and look for a
perturbation of the form (u, , b) = (v, 0, �)eiφ/ε + O(ε), where 0 <ε 
 1. Following
the formal asymptotic procedure outlined by Lifschitz & Hameiri (1991), it can be
shown that while the wave vector k = ∇φ is still governed by (4.1a), the velocity and
buoyancy amplitudes (v, �) of the disturbance are governed by the following transport
equations (see also Friedlander 2001):

v̇ = (2kkT/|k|2 − I)Lv + (kkT/|k|2 − I)� ẑ, �̇ = (N2 ẑ − ∇B) · v. (B 1a, b)

Any two-dimensional equilibrium solution of the Euler equations in the horizontal
plane is also a solution of the Boussinesq equation with zero buoyancy. Thus
the Abrashkin–Yakubovich solutions (2.3) and (6.1) may represent vertical vortex
columns that evolve in a stably stratified flow. We now show how to reduce the
transport equations (B 1) to a second-order differential equation of the form (7.1).
The construction follows that of Bayly et al. (1996), but density stratification requires
additional arguments.
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In the presence of stratification, Lifschitz’s equation (4.4) is

ω̇ = Lω + (ω × k)Γ · k/|k|2 + � ẑ × k, (B 2)

where Γ is the (absolute) vorticity of the equilibrium flow. Owing to the contribution
of buoyancy in that equation, we note in passing that irrotational trajectories may
be unstable with density stratification. Now, (B 1b) with B = 0 and (B 2) projected on
the vertical axis yield respectively

�̇ = N 2vz, ω̇z = Γ kzvz, (B 3)

where the subscript z denotes the vertical component. As a consequence, Γ kz� − N2ωz

is a Lagrangian invariant, i.e. an integral of the motion. Note that this property may
also be proved by conservation of potential vorticity. If a trajectory is unstable, this
integral must be zero, so that

Γ kz� = N2ωz. (B 4)

Indeed, both Γ and kz are constant along the trajectories of the equilibrium flow;
therefore, if � and ωz grow exponentially as t → +∞, they must vanish when t → −∞
and the conclusion follows.

Now, it may be shown from (B 1a) and the incompressibility condition k · v =0 that
the vertical component of the velocity disturbance is governed by

v̇z = −2k2
z

kT
h Lkh

|kh|2|k|2 vz − 2kz

kT
h Hkh

|kh|2|k|2 ωz − |kh|2
|k|2 �, H = L

(
0 1

−1 0

)
. (B 5)

Thus, the local stability problem is now reduced to a system of three differential
equations (B 3) and (B 5) for the variables (�, ωz, vz).

One of these variables may be eliminated thanks to (B 4) and the problem is reduced
to two equations. Following Bayly et al. (1996), it is convenient to introduce

p = −kzvz|k|/|kh| and q = ωz|k|/|kh|.

After some algebra, the resulting system of equations may be written as(
ṗ

q̇

)
=

(
K̇ D

−Γ −K̇

)(
p

q

)
,

where Γ is the basic vorticity and

K = ln
|kh|
|k| , D = 2k2

z

kT
h Hkh

|kh|2|k|2 +
N2

Γ

|kh|2
|k|2 .

Therefore, since Γ̇ = 0, this system may be written as q̈ +(K̈ − K̇2 +Γ D)q = 0 which
after some further calculations yields (7.1).

Appendix C. Steady vortices in strain fields
We prove that the vortex patches described by (8.1) are steady and may be matched

with a potential steady flow which behaves as a multipolar strain field at infinity.
From (8.1) with |ξ | � 1, the position Z(t, ξ, ξ̄ ) and complex velocity W (t; ξ, ξ̄ ) = ∂t Z̄

of a fluid particle inside the vortex may be represented as

Z(β, β̄) = β + Sβ̄n−1/(n − 1), W (β, β̄) = −iω(β̄ − Sβn−1)/n, (C 1a, b)
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where β = ξeiωt/n. If we choose the complex parameter β in the interior of the unit
disk, |β| � 1, and the complex coordinate z = x + iy related to β by

z = β + Sβ̄n−1/(n − 1), (C 2)

then (C 1b) and (C 2) provide an implicit representation of the complex
Eulerian velocity field: W (z, z̄) = U − iV . Time being eliminated from the Eulerian
representation of the velocity field, the corresponding flows are therefore steady.

In the exterior region, the Eulerian complex velocity field is represented as

Wext (η) = −iω(η−1 − Sηn−1)/n where z = η + Sη1−n/(n − 1) and |η| > 1. (C 3)

Since Wext depends implicitly on z, and not on z̄ nor t , the flow in the exterior
region is stationary and irrotational. Continuity of the velocity field across the vortex
boundary is easily checked from (C 1) and (C 3), since β and η may be written as eiχ

(χ ∈ [0, 2π]) on the unit circle.
Far from the vortex (|z| → ∞), z ∼ η and Wext ∼ −iω/(nz) + iωSzn−1/n: this is the

superposition of a point vortex with circulation 2πω/n and of an irrotational strain
field. Thus the exact solution (8.1) generalizes the Moore–Saffman steady elliptical
equilibrium in a strain field.

It is finally of interest to show that when S 
 1, these flows are connected to the
uniform multipolar vortices described by Eloy & Le Dizès (2001). Indeed, relation
(C 2) between the complex coordinate z and the auxiliary parameter β may be easily
reversed for small S. It gives, to a first approximation, β = z − Sz̄n−1/(n − 1), so that
the complex velocity (C 1b) is

W (z, z̄) = −iω(z̄/n − Szn−1/(n − 1)). (C 4)

The flow being incompressible, it may be characterized by a stream function defined
by the usual relations U = ∂yΨ and V = −∂xΨ . In terms of the complex coordinates,
it is not difficult to show that these relations are ∂zΨ = − 1

2
iW and ∂z̄Ψ = 1

2
iW̄ . Upon

integration, the stream function related to (C 4) therefore becomes

Ψ (z, z̄) = − ω

2n

(
|z|2 − S

zn + z̄n

n − 1

)
= −ω

n

(
r2

2
− Srn

n − 1
cos nθ

)
= Ψ (r, θ), (C 5)

with z = reiθ . This is the solution discussed in Le Dizès (2000).
Recall that (C 5) is also an exact solution of Euler equations. However, contrary

to (C 1), its vorticity is uniform (Γ =2ω/n) and it is not known if (C 5) may be
matched with an external potential strain field for any S. When S 
 1, such a
construction is possible, as mentioned by Eloy & Le Dizès. Their results may be
recovered directly from our potential solution (C 3). Indeed, at first order in S we get
η = z − Sz1−n/(n − 1). Therefore, the external stream function may be evaluated and
is, when S 
 1, in agreement with Eloy & Le Dizès

Ψext (r, θ) = −ω

n

(
ln r − S

n

(
rn +

r−n

n − 1

)
cos nθ

)
.

Note finally that in the case of freely rotating vortex patches in a potential flow
at rest at infinity, the solution of Abrashkin & Yakubovich (2.3) with (3.1) may be
characterized, when S 
 1, by the following stream function:

Ψ (r, θ, t) = −ω

n

(
nr2

2
− Srn

n − 1
cos n(θ − Ωnt)

)
with Ωn = ω(1 − 1/n).
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It corresponds to a Rankine vortex with vorticity 2ω disturbed by planar Kelvin
modes with n-fold symmetry that rotates with angular velocity Ωn (Saffman 1992,
§ 9.4).
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